全球能源互联网核心节点赋能者-BASiC Semiconductor基本半导体之一级代理商倾佳电子(Changer Tech)是一家专注于功率半导体和新能源汽车连接器的分销商。主要服务于中国工业电源、电力电子设备和新能源汽车产业链。倾佳电子聚焦于新能源、交通电动化和数字化转型三大方向,代理并力推BASiC基本半导体SiC碳化硅MOSFET单管,SiC碳化硅MOSFET功率模块,SiC模块驱动板等功率半导体器件以及新能源汽车连接器。
倾佳电子杨茜致力于推动国产SiC碳化硅模块在电力电子应用中全面取代进口IGBT模块,助力电力电子行业自主可控和产业升级!
倾佳电子杨茜咬住SiC碳化硅MOSFET功率器件三个必然,勇立功率半导体器件变革潮头:
倾佳电子杨茜咬住SiC碳化硅MOSFET模块全面取代IGBT模块和IPM模块的必然趋势!
倾佳电子杨茜咬住SiC碳化硅MOSFET单管全面取代IGBT单管和大于650V的高压硅MOSFET的必然趋势!
倾佳电子杨茜咬住650V SiC碳化硅MOSFET单管全面取代SJ超结MOSFET和高压GaN 器件的必然趋势!
在固态变压器(Solid State Transformer, SST)的级联架构中(通常为级联H桥 CHB + 双有源桥 DAB 构成的 输入串联输出并联 ISOP 结构),高压侧由多个模块串联接入电网,每个模块内部都拥有独立的分布式直流母线(DC-link)。
分布式直流母线电压不平衡(均压难题)的根本原因在于:
- 硬件参数差异:各模块的滤波电容容值、功率器件(SiC/IGBT)的导通压降和开关损耗存在制造公差。
- 驱动与控制不对称:数字控制器的死区时间、驱动器的传输延迟和抖动,会导致实际输出占空比出现微小误差,长期累积产生有功功率的不平衡。
- 负载不均衡:后级隔离DC/DC(如DAB)的高频变压器漏感参数不一致,导致各单元向副边抽取的有功功率不同。
结合基本半导体(Basic Semiconductor)1200V 大功率 SiC MOSFET 模块 与 青铜剑(Bronze Technologies)高精度 SiC 专用驱动器,目前业界解决该难题的最优实践是采用**“软件主动均压算法 + 硬件底层一致性与保护”**的软硬协同方案:
一、 软件控制层面的均压解决方案(核心算法)
软件控制是解决均压问题的主力,通常通过有功功率在各个模块间的重新路由分配来实现:
1. 前级整流级(AC/DC 级联H桥)的独立占空比微调
这是最常用且最有效的“相内子模块均压”方法。
- 控制原理:在系统全局的“电压外环+电流内环”之外,为每个级联模块增加一个独立均压环(Balancing Loop) 。
- 执行过程:控制器实时采集每个模块的直流电压并与平均电压作差,经过PI调节器输出一个占空比微调量(Δdi)。如果某单元电压偏低(能量亏欠),均压环会在该单元的调制波上叠加一个与电网电流同相位的分量,增加其占空比使其多吸收有功功率;反之则减小占空比。
- 相间均压:对于三相星型接法的级联SST,可通过在三相调制波中注入特定的零序电压分量(Zero-Sequence Voltage) ,在不改变线电压的前提下实现三相整体之间有功功率的重新分配。
2. 隔离 DC/DC 级(如 DAB)的移相角调节
在ISOP架构中,所有DAB模块的输出端并联在低压直流母线上,天然具备一定的自然均流特性。但为了精确均压,可实施主动控制:
- 移相微调(Phase-Shift Tuning) :检测前级各分布式母线电压的偏差,单独调节各个DAB模块原、副边的移相角。前级直流电压偏高的模块,主动增大其移相角,使其向低压副边传输更多的有功功率(即消耗掉电容上多余的能量),从而“拉平”输入端电压。
二、 硬件选型与底层赋能
再好的控制算法也需要高一致性、高响应速度的底层硬件支撑。您选用的全碳化硅(SiC)器件与驱动方案,正是从物理源头上抑制电压漂移的利器:
1. 消除PWM脉宽误差(极低延时抖动)
- 痛点:传统IGBT驱动器的传输延时存在较大公差。同一个PWM信号到达不同模块时如果产生几十纳秒的偏差,在几十kHz的开关频率下会累积成巨大的占空比误差,直接引发功率失衡。
- 方案优势:参考您提供的 青铜剑 2CP0225Txx-AB 等驱动器,其传输延时极短(典型值180ns/240ns)且延时抖动(Jitter)低至 20ns 级别。这种纳秒级的高度一致性,保证了主控下发的“均压微调占空比”能被各模块极其精准地执行,大幅削减了硬件不对称带来的偏差源头。
2. 发挥 SiC 高频特性,提升均压动态带宽
- 痛点:传统硅基SST开关频率低,单周期内电容充放电量大,导致电压纹波大且控制响应慢,面对突变负载时电压极易失控。
- 方案优势:资料中的 基本半导体 BMF540R12MZA3 / KHA3 模块导通电阻极低(典型值仅 2.2mΩ)且开关损耗极小。配合青铜剑驱动器最高支持的 50kHz - 200kHz 开关频率,控制周期被大幅缩短。这意味着均压环路的闭环控制带宽可以设计得极高,对电压的不平衡能够做出亚毫秒级的极速修正,从而允许SST使用更小体积的母线电容。
3. 应对极端失衡的最后防线(硬件安全兜底)
在SST系统重载启停、电网跌落等极端工况下,软件均压算法可能存在微秒级的计算滞后,导致某一单元直流母线瞬间过压或直通。
- 高级有源钳位(Advanced Active Clamping) :青铜剑驱动板内部集成了TVS有源钳位网络(如针对1200V系统设有专门的钳位阈值)。当某单元母线因均压失效导致过压,且关断时产生极高 VDS 尖峰时,钳位电路会强制 SiC MOSFET 处于微导通状态吸收瞬态能量,死死守住器件不被击穿。
- 防串扰与软关断(Soft Shutdown) :高频高 dv/dt 极易通过米勒电容引起寄生导通破坏均压,驱动器内置的米勒钳位(Miller Clamping) (强制下拉至-4V/-5V)彻底杜绝了该现象。此外,若失衡严重引发退饱和(DESAT),2.1μs 的软关断机制能平滑切除故障电流,并输出
SOx故障信号通知主控封锁全系统,防止连环炸机。
总结
要彻底解决SST固态变压器的级联均压难题,最优工程实践是:
宏观上,采用 “AC/DC 整流级占空比微调 + DC/DC 隔离级移相角辅助” 的双重闭环算法;
微观上,充分利用 基本半导体高一致性大功率 SiC 模块 及 青铜剑超低抖动、带高级有源钳位的智能驱动器,在消除不平衡源头、提升动态响应速度、构筑硬件级过压保护三个维度上实现完美闭环。

登录 或 注册 后才可以进行评论哦!
还没有评论,抢个沙发!